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Introduction: What are 
Generative Adversarial 
Network(GANS)?

Generative adversarial networks (GANs) 
provide a way to learn deep 
representations without extensively 
annotated training data. They achieve 
this by deriving backpropagation signals 
through a competitive process involving 
a pair of networks. The representations 
that can be learned by GANs may be 
used in a variety of applications, 
including image synthesis, semantic 
image editing, style transfer, image 
superresolution, and classification.



Introduction: How 
do GANS Work?
• In generative modeling, training examples x are drawn 

from an unknown distribution pdata(x). The goal of a 
generative modeling algorithm is to learn a pmodel(x) 
that approximates pdata(x) as closely as possible.

• A straightforward way to learn an approximation of 
pdata is to explicitly write a function pmodel (x; θ) 
controlled by parameters θ and search for the value of 
the parameters that makes pdata and pmodel as similar as 
possible. 

• In particular, the most popular approach to generative 
modeling is probably maximum likelihood estimation, 
consisting of minimizing the Kullback-Leibler 
divergence between pdata and pmodel . The common 
approach of estimating the mean parameter of a 
Gaussian distribution by taking the mean of a set of 
observations is one example of maximum likelihood 
estimation.



Introduction: How Do GANS Work?

The discriminator determines if each instance 
of data that it analyzes is actually a part of the 
training data set, whereas the generator, 
creates new data instances, that are 
evaluated for authenticity.
The cost of each participant determines how 
the algorithm will proceed. Using the 
Minimax game, where the generator value is 
equal to the discriminator cost minus one, is 
the simplest way to define the cost.



Data Set: The CIFAR-
10 dataset

The CIFAR-10 dataset consists of 
60000 32x32 colour images in 10 
classes, with 6000 images per 
class. There are 50000 training 
images and 10000 test images.

The dataset is divided into five 
training batches and one test 
batch, each with 10000 images. 

The classes are completely mutually exclusive. 
There is no overlap between automobiles and 
trucks. "Automobile" includes sedans, SUVs, things 
of that sort. "Truck" includes only big trucks. 
Neither includes pickup trucks.



Data 
Preprocessing

Images in CIFAR-10 are of size 32x32
For our experiment, we rescale them to 64x64 and 
divide the dataset in batch sizes of 64 using the 
transforms and dataloader methods of Pytorch



Requirements

Hardware:

CPU: Intel i5 12th generation or higher, AMD Ryzen 5 5000s or 
higher

GPU: Nvidia CUDA Compatible GPU with minimum Pascal 
Architecture

CUDA and cuDNN: CUDA compute support of 8.6 and cuDNN
support of 11.8 with Video Memory atleast 8GB

Memory: 16GB and Higher

Software:

Programming Language: Python 3.10

IDE: VSCode, Jupyter or Anaconda

Modules: PyTorch, numpy, matplotlib



Model: Generator
The GAN model consists of two Neural Network Component, generator 
and Discriminator

Generator (G):
The generator is a sequential neural network composed of several layers.
• The generator (G) has a total of 5 layers.
• Initial layer: ConvTranspose2d with 100 input channels, 512 output 

channels, a kernel size of (4, 4), and stride of (1, 1). It performs 
transposed convolution.

• Batch normalization is applied to the output of the first convolutional 
layer with 512 channels.

• ReLU activation is applied after batch normalization.
• Three more layers follow, each consisting of ConvTranspose2d, 

BatchNorm2d, and ReLU layers, progressively reducing the number of 
channels from 512 to 256, 256 to 128, and 128 to 64.

• The final layer is a ConvTranspose2d with 64 input channels, 3 output 
channels (representing RGB channels), a kernel size of (4, 4), stride of 
(2, 2), and Tanh activation function.



Model: Discriminator
Discriminator (D):
The discriminator is also a sequential neural network.
• The discriminator (D) has a total of 5 layers.
• Initial layer: Conv2d with 3 input channels, 64 output channels, a 

kernel size of (4, 4), and stride of (2, 2). LeakyReLU activation is 
applied.

• Three more layers follow, each consisting of Conv2d, BatchNorm2d, 
and LeakyReLU layers, progressively increasing the number of 
channels from 64 to 128, 128 to 256, and 256 to 512.

• The final layer is a Conv2d with 512 input channels and 1 output 
channel, representing the binary classification result (real or fake). 
Sigmoid activation is applied after this convolutional layer.

In summary, the generator takes random noise as input and generates 
synthetic images, while the discriminator aims to distinguish between 
real and generated images. The GAN training process involves the 
generator trying to improve its ability to generate realistic images, and 
the discriminator trying to improve its ability to differentiate between 
real and fake images. This adversarial training loop leads to the 
generation of increasingly realistic images by the generator.



Results: Initial Epoch 1/30
Real Image Sample Generated Image



Results: Epoch 10/30
Generated ImageReal Image Sample



Results: Epoch 15/30
Generated ImageReal Image Sample



Results: Epoch 25/30
Generated ImageReal Image Sample



Results: Epoch 30/30
Generated ImageReal Image Sample



Evaluation

• After training for 30 epochs we get a final loss of 
3.9%  for Generator and  0.46% for discriminator.
• This suggests that the generator can still be refined 
to get Better results with more iterations and/or data



Limitations of GAN’s
• Data Quality and Quantity:

Limited Datasets: GANs require large and diverse datasets for effective training. Obtaining high-quality 
datasets can be challenging, especially for niche or specialized domains.

• Data Imbalance: If the dataset is imbalanced or lacks diversity, the generated samples may not accurately 
represent the entire data distribution.

• Training Instability:
• Mode Collapse: GANs are prone to mode collapse, where the generator learns to generate a limited 

set of samples, ignoring the full diversity of the target distribution.
• Convergence Issues: GANs might struggle to converge to a stable state, leading to oscillations in the 

training process.
• Hyperparameter Sensitivity:

GANs are sensitive to the choice of hyperparameters, and finding the right set of parameters for a specific 
task can be a time-consuming process.

• Compute Requirements:
Training GANs demands significant computational resources, including high-end GPUs or TPUs. This can be a 
barrier for smaller research labs or individual researchers with limited access to such resources.



Conclusions: Future Scope
GANS are still a emerging field with lots of future implementation. This model can be further used to:
Transfer Learning Exploration:
Investigate transfer learning techniques to enable the GAN model to adapt seamlessly to new datasets and 
domains, ensuring versatility and improved performance.
Synthetic Data Generation:
Investigate the use of the GAN model in generating synthetic data for training and testing in fields like 
computer vision, virtual reality, and autonomous systems, reducing the dependence on large, real-world 
datasets.
Image Style Transfer:
GAN’s can be further developed to mimic a specific form of art-style and create newer arts.
Explore the integration of style transfer techniques to allow users to customize the artistic style of 
generated images, enhancing the creative possibilities of the GAN model.
High-Resolution Image Generation:
Explore techniques to enhance the GAN's ability to generate high-resolution images or upscale lower 
resolution images to higher, catering to applications where fine details are crucial, such as medical imaging 
or digital art.
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